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STABLE NORM AND 72 NORM ON HOMOLOGY OF
SURFACES

EUGENE GUTKIN AND DANIEL MASSART

ABSTRACT. We study the stable norm on the homology of a closed oriented
surface endowed with a possibly singular Riemannian metric and compare
it with the norm induced by the L? norm on one-forms.

1. INTRODUCTION

The stable norm on the homology of a manifold depends on the choice of a
Riemannian metric [Fe 69, G-L-P 81]. It has been extensively used in geometry
and analysis. See [Ba 94, BI94, McS-R 95 I, Mt 97]. For convenience of the
reader, we briefly recall the basic definitions.

Let (M, g) be a Riemannian manifold. We denote by £(vy) the length, with
respect to the metric g, of a connected, rectifiable curve. By multicurves we
will mean formal linear combinations of curves. If v = . r;y; is a multicurve,
we set ||y|| = >, |ri|€(vi). Let h € Hi(M,Z) be a homology class. Its stable
norm is ||h|| = min, ||v||, where y runs through the geodesic multicurves in the
class h.

An alternative definition of the stable norm is due to H. Federer [Fe 69]. It
is based on the notion of the mass of a Lipschitz current. The stable norm of
h € H1(M,R) is then the minimal mass of a Lipschitz current in the homology
class h. Federer’s approach allows to minimize over more general objects than
the multicurves or laminations. However, J. Mather proved that the minimizing
currents are supported by geodesic laminations. See [M 91].

Since the stable norm is defined by the length, it makes sense for the singular
Riemannian metrics. The latter arise in several contexts. In particular, flat
Riemannian surfaces with singular points, and their geodesic flows, are closely
related to the billiards in polygons. See [GJ 00] and the bibliography there.

The theme of the present work is the stable norm on possibly singular Rie-
mannian surfaces. Our goal is analyze the stable norm on these surfaces, in
general, in relation to their topology and the geometry of their metrics. This
continues the study started in the doctoral dissertation of one of the authors.
See [Mt 96].

We will now describe the contents of the paper in more detail.

In section 2 we give a brief overview of the basic properties of the stable norm.
In subsection 2.1 we obtain an inequality relating the stable norm and the L2
norm on the homology. See Theorem 1 and equation 3. Recently G. Paternain
has extended the upper bound in inequality (3) to higher dimensions. See [Pa
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01]. Since the L? norm encodes the analysis, and the stable norm encodes the
geometry of the surface, it is useful to be able to compare the two. In subsection
2.2 we study the intersection form on the homology of a topological surface, M,
in relation to a metric on M. Let M be the moduli space of the metrics of
curvature —1 on M. The norm of the intersection form is a function on M.
We establish geometric lower and upper bounds on the norm, which are valid
everywhere on M. See Theorem 3.

D. M. thanks Albert Fathi, who suggested to him inequality (3). Some of
the work on the paper was done in the Summer of 1998 while the authors were
visiting the University of Freiburg. It is a pleasure to thank Victor Bangert for
the invitation and the faculty and staff of the Mathematics Institute for their
hospitality.

2. RELATIONS BETWEEN THE STABLE NORM AND THE L?-NORM

Let M be a closed manifold and let g be a Riemannian metric on it. The
complex of Lipschitz currents on M is dual to the complex of smooth differential
forms. It satisfies the Eilenberg-Steenrod axioms, and its homology is naturally
isomorphic to the real homology of M. See [Fe 69,Fe 74] and [F-F 60] for
details.

The comass of a differential one-form on M is given by
(1) comass(w) = sup sup {M}

seMver M |[V]]

Equation (1) defines a Banach norm on the space of one-forms on M. We

denote by mass(n) the dual norm on the space of one-currents. Thus

(2) mass(n) = sup{< w,n > | comass(w) < 1}.

Taking the infimum of mass(n) over the currents in a homology class, [] = h,
yields a Minkowski norm on the homology. It is equal to the stable norm on
H,(M,R), defined in Section 1. See [Fe 69]. In what follows we will freely use
both definitions of the stable norm, ||h||, for h € H;(M,R). Note that comass(w)
defined by equation (1) implicitly depends on the Riemannian metric on M.
Hence, mass(n), and therefore the stable norm on the homology depend on the
metric.

From now on we restrict our analysis to the manifolds of two dimensions.
More precisely, we will assume that (M,g) is a closed oriented Riemannian
surface. If w € H' (M, R), we denote by the same symbol the unique harmonic

form in the cohomology class w. The integral ,/ [’ WA *w defines an L?-norm

on the space of differential one-forms on M, and a Euclidean norm on H! (M, R).
The duality between the homology and the cohomology transfers the latter to
H,(M,R). We will use the notation | - ||z for all of them. We will denote by
< -, > the pairing between linear spaces, and by (, ) the scalar product of two
elements in a Euclidean or a pre-Hilbert space. The spaces should be clear from
the context. If w is a one-form on M, we denote by X, the dual vector field
of w. It is determined by the condition that for any z € M and any v € T, M,
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we have < w(z),v >= (v, X, (2)). Let dvol be the volume form induced by the
metric.

We will use symbols like A(-,-) for bilinear forms on a vector space. Let
Int(h, k) be the intersection form on H;(M,R). Set

Int(h, k)
[[RI[ 1%
be the norm of the intersection form with respect to the stable norm on the
homology. It implicitly depends on the metric.

Since dim H1 (M, R) < oo, the stable norm and the L?-norm on the homology
are equivalent : There exist constants c;,cy > 0 such that

ci[[hll < [[rll2 < eaf|Al-

K = sup{ th,k € H(M,R) \ {0}}

The theorem below provides geometrically meaningful constants for this in-
equality.

Theorem 1. Let vol(M) be the total volume of M, and let K be the norm of
the intersection form on Hy(M,R). Then for all h € Hi(M,R) we have

1
3) —————=IIhll < [[h[l2 < K+/vol(M)||h].
vol(M)
Proof. For any differential one-form w and for z € M we denote by ||w(2)]|
the norm of the corresponding linear form on 7,M. Then (w A *w)(z) =
||lw(2)||?(dvol)(z). Hence, by equation (1)

(4

)
w 2= wi\z 2 VO. su wiz 2 VOl = VO comass|{w 2.
(lwll2) / lw(2)[|*d 1§/ ZEPH (2)[[*d vol 1(M)( (w))

Thus, the L?-norm and the comass-norm on the space of differential forms are
related by the inequality

|lw|le < v/vol(M) comass(w).

The L?-norm on the space of one-forms induces the dual L?-norm on the space
of Lipschitz one-currents. Dualizing the preceding inequality, we obtain

(5) mass (1) < v/vol(M) [|7][z-

Minimizing both sides of equation (5) over the currents in a homology class, we
obtain the left inequality in equation (3).

Let P : Hi(M,R) — H'(M,R) be the operator of the Poincaré duality. It is
a linear isomorphism, satisfying the following identity. For any w € H'(M, R)
and any h € Hi(M,R) we have
(6) < w,h >=Int(P tw,h).
In the equation below we tacitly assume that the denominators are not equal
to zero. Then

<w,h> Int(P tw,h)

() Jwl= sup ———= sup ———"—<K|P u|.
hem(mr) Rl heHy (M,R) Al
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Rewriting equation (7) as ||Pz|| < K]||z||, where z € H;(M,R), and taking
the supremum of ||Pz||/||z|| over  # 0, we obtain that K is the norm of the
Poincare duality, as an operator from (Hi(M,R),| - |) to (H'(M,R),]| - ||)-
Using this and the bound on the L?Z-mnorm by the comass-norm on H!(M,R)
(see the inequality following equation (4)), we obtain

[Phll2 < +/vol(M) |[Ph| < v/vol(M) K|[R]|.
Since the Poincare duality is an L2-isometry between the homology and the
cohomology, the preceding inequality implies |||l < y/vol(M) K||h||. This

concludes the proof of Theorem 1. O
The following is immediate from equation (3).

Corollary 2. Let M be an arbitrary closed, oriented Riemannian surface. Let
K be the norm of the intersection form on Hy(M,R) with respect to the stable
norm on the first homology of M. Then

(8) K -vol(M) > 1.

3. BOUNDS ON THE INTERSECTION FORM IN CONSTANT CURVATURE

In this subsection we study more in detail the stable norm on the homology,
with respect to a metric of curvature —1. We fix the surface, and vary the
metric. Thus, the stable norm and its attributes become “functions” on the
moduli space. When needed, we will notationally indicate the dependence of a
quantity on the point in the moduli space. Thus, if g is a metric of curvature
—1, we denote by K (g) the norm of the intersection form on the first homology.
The following theorem estimates K(g) in terms of the length of the shortest
closed geodesic. Heuristically, it means that the norm of the intersection form
is controlled by the “short” closed geodesics.

Theorem 3. Let M be a closed surface, and let g be a metric of curvature —1
on it. Let v1 be the shortest non-separating closed curve in M, and let 1 = l1(g)
be its length.

Then there exist positive constants a and b, depending only on the genus of the
surface, such that

) a b

- <K < — .
o)) = K@) < Ioga)

Before going to the proof of the inequality 9, we will establish an lower bound
on K(g), valid for any metric g on M. This bound is of independent interest. See
the proposition below. We will also formulate and prove a geometric property
of the geodesics in a metric of curvature —1. See the lemma below. We will use
the Proposition and the Lemma in the proof of Theorem 3.

Proposition 4. Let M be a closed surface, and let g be any metric on it. Let
~v1 be the shortest non-separating closed curve in M, and let Iy = l1(g) be its
length. Then

(10) K(g) >

r—ANN;| Ne]
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Proof. Let o and B be different, closed, oriented, non-separating curves. We
will prove that the arclength between any consecutive intersections is at least
l1/2. Our argument is modeled on the proof of lemma 2, p. 58 of [F-L-P 79].
Assume the opposite, and let P and Q be two consecutive intersections with
the same sign. Consider the closed curve formed by the arc of « joining P
with @, and the arc of § joining @@ with P. Its length is less than [;, hence it
separates. But it is homotopic to a curve intersecting o exactly once. Thus, it
cannot separate. See Figure 3.

FIGURE 1. two consecutive intersections

Let now 0 < r < l;/2. We cut a and 3 into pieces of the length at most
r. In view of the above, any pair of these segments cannot intersect twice
with the same sign. Let n, and ng be the numbers of respective pieces. Then
[Int([a], [B])] < nang. Let I(«) and I() be the respective lengths. Then

la) 1(B)

n, < —=+1, ng< —=+1.
T T

Therefore

Int([e],[8]) _ 1 1
AP (2
i@ <t
Since r is arbitrarily close to l1/2, we obtain

Int (o], [A])
[l [1131]

).

9
<.
it

O
The following corollary is immediate from equation 8 and the proposition
above.
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Corollary 5. For any metric on M we have

lQ
vol(M) > 51

From now on we assume that the metric has curvature —1. An infinite or a
semi-infinite geodesic is asymptotic to a closed geodesic, -, if either the a-limit
or the w-limit set of the infinite geodesic is equal to 7.

Lemma 6. Let vy be a closed geodesic on M, of length [. Set
x
(11) e(x) = arccosh (coth(i)) .

Then any simple geodesic that enters the e(l)-neighborhood of 7y either intersects
it, or is asymptotic to it.

Proof. Using the action of SL(2,R), we may assume without loss of generality
that the lift, T, of v to H? is iR, . Let a be a simple geodesic in M, and let A
be the lift of . If A is a vertical line, or a circular arc through the origin, then
a is asymptotic to . Otherwise, A is given by the equation (z —a)? +y? = r2.
The case r = |a| has been considered. If |a| < r, then « intersects -y, and there
is nothing to prove. Thus, we assume from now on that |a| > 7.

Let N(e) C H be the e-neighborhood of I'. The boundary of N (¢) is bounded
by the Euclidean straigt lines with equation

x
=+
Y sinh(e)
Since « enters the e-neighborhood of «, its lift A intersects N (e). This implies
a® > (a* —r?)(1+8(e)?).

In what follows we assume that a > 0. The case a < 0 is disposed of in
the same manner. The isometry of H, corresponding to <y is z — exp(l)z.
Since « is simple, A and exp(l)A don’t intersect. The endpoints of exp(l)A are
exp(l)(a + r),exp(l)(a — r). Hence

a+r<exp(l)(a—r).

Combining the two inequalities above, we get 2 cosh(e) > coth(%), which implies
the claim. O

Proof. We will now prove Theorem 3. Let a1,...a; (k < 3(g + 1)) be the
closed geodesics in M of length less than arcsinh(1), and let I1,- - ,l; be their
respective lenghts. For 1 < ¢ < k let T; C M be the closed, embedded collar
neighborhood of «;, of width w; = €(l;) < argsinh(1/sinh(/;)). By the collar
lemma (see [Bu]), they exist, and T = U¥_, T; is a disjoint union. Set S = M\T.
Then every closed geodesic in S is longer than arcsinh(1).

Let now 7v; # 72 be any pair of simple closed geodesics in M. From the
decomposition M = S U T, we have

Int(vy1,72) < [Int(y1 NT,v%2NT)|  [Int(y1 NS, y2NS)|

y)i(ye) = UmNT)i(renT) U NS)l(reNS)
By an argument similar to that in the proof of Proposition 4, the second

term in the right hand side is bounded on M by 9/e(arcsinh?(1)).
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The first term in the right hand side of the inequality above satisfies

[Int(y: NI,y NT)| ZHH’G v N T, 72 NT;)|

M NT(enT) ~— % nNT)eNT)

To explain our argument, consider first the case k¥ = 1. In this case, T' = T1,
and we suppress the corresponding indexation in what follows. The general
case is treated similarly, only the constants are modified.

alpha

- y = delta. x

Q

Q1

P1L

FIGURE 2. the lifted picture

As in the proof of Lemma 6, we assume without loss of generality, that the
lift of « lifts to H is Ry¢. Then the corresponding lift of 7" is bounded by the
straight lines y = +xz/sinhe. Let 8 be a geodesic arc in T, perpendicular to «,
that lifts to H as the half-circles centered at zero with radius exp(nl(«@)): n € Z.
Call P, (resp. Q) the intersection point of the n-th half-circle with the line
y = x/sinhe (resp. y = —z/sinhe). See figure 3. We may assume that a lift
of one, hence all (since ; has no self-intersections) connected component of
1 NT to H has one endpoint between P; and P, and the other between P,_;
and P, ; and likewise a lift of any connected component of vy NI" to H has one
endpoint between ()1 and (2, and the other between P;_; and P;. Then, since
the number of intersections between [P}, Q] and [Q1, Py] isn+ &k — 1,

Int(y1 NT,v2NT) n+k—1
Ui NT)(yeNT) = d(Pr, Qn)d(Q1, Pr)

Let us compute d(Pi, Qy). The point P; has the coordinates ((1+6%)~1/2, §(1+
62)~1/2). The hyperbolic isometry A with matrix

cosh§  —sinh3
—sinh§  cosh §
sends P; to i and i to Q1. We compute d(7, A(Qy,)). Note that Q,, = exp(nl)Q1 =
exp(nl)A(i) whence A(Q),) is the image of 7 under the hyperbolic isometry with
matrix
exp(%l)(cosh 2+ exp(——)(smh )2 —2sinh(§) cosh § cosh( L
—2sinh(§) cosh £ cosh(%) exp(%2)(sinh £)% + exp( )(cosh )?
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and (see [F-L-P 79], p. 151) 2coshd(i, A(Qr)) is the sum of the squares of the
coefficient of the above matrix, that is,

coshd(Py,Q,) = cosh(nl)(cosh(e))? + (sinh(e))?
l 1
= cosh(nl)(coth(i))2 + m

We see that d(Pr,Qn) > nl so, assuming without loss of generality that n > k,

n+k—1 - 1+ 51 2?2
d(P1,Qn)d(Py, Q1) ~ 1d(Py, Q1) — ld(Py, Q1) ~ ld(P1,Q1)

Now d(P1, Q1) is equivalent to |log!| when [ goes to zero so there exists some
universal constant ¢ such that d(P;, Q1) > c|logl| whence

n+k—1 2c
< .
d(Pla Qn)d(Pka Ql) ll 10gl|

This establishes the upper bound in equation 9.

Now for the lower bound. By a theorem of P. Buser ( [Bu], p. 125) we can find
a collection of geodesics 72, . .. y3¢—3 of length < 26(¢ —1), such that i, ...y3¢-3
cut M into pair of pants Pi,... Pyc_o. We exhibit a curve « intersecting i
exactly once, and estimate its length [. Then « cannot separate, and we have
K(g) > 1/ll.

Let us assume that y; belongs to two pair of pants P; and P, ; if it belongs to
only one we proceed similarly. Begin with the case when P, and P have another
common boundary component -y5. Call 3 the third boundary component of
Py. According to [F-L-P 79], p. 152, the length a of the common perpendicular
to 1 and o in P; is given by

cosh(%) + cosh(%) cosh(%) < cosh(13¢ — 13)(cosh(13¢ — 13) + 1)
sinh(2) sinh(4) - sinh(%)2

cosha =

since l9, I3 < 26(¢ —1) and the function sinh increases strictly. We get the same
inequality in P». Now we connect the two common perpendiculars by segments
of 41 and 7, (see figure 3 ).

The length of the closed curve « thus obtained is less than

cosh(13¢ — 13)(cosh(13¢ — 13) +1), 1

sinh(%)? )+ = +13(¢ - 1).

2 h
arccosh ( 5

The above function of /; grows like |logli| when [; goes to zero, whence the
conclusion.

If P, and P, only have one common boundary, we take a sequence P, , ... P;,
of pair of pants such that 41 = 1, F;, has a common boundary with F;, , for
k < mn, and ; is a common boundary for P;, and P;, (see figure 3).

The closed curve « is constructed as above, by gluing segments of boundaries
and common perpendiculars. The length is estimated similarly, the constant is
just multiplied by 2¢ — 2. This yields the claim. O

k+1
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gammal gamma2

FIGURE 4. a sequence of pair of pants

4. MISCELLANEOUS

We finish with a brief discussion of the behavior of the stable norm, when
the metric ¢ € M goes to the boundary, OM. The set of hyperbolic metrics
of curvature —1, with all lengths of closed curves bounded below by some fixed
constant, is compact in moduli space. One may go to infinity in moduli space
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by shrinking a separating geodesic or a non-separating one. This induces two
different behaviours for the stable norm.

First case

Second case

FIGURE 5. degenerating to a cusped surface

First case Let g, be a sequence of hyperbolic metrics such that there exists
a non zero homology class h, and for each n, a geodesic -, in the class h,
the length [,, of which goes to zero when n goes to infinity. Then the stable
norm of h with respect to g, goes to zero, and the sequence of stable norms
corresponding to g, does not converge.

This is reflected in the fact that the surface M converges to a surface with
two cusps. For such a surface the stable norm is not defined, since the boundary
of a cusp region is non homologically trivial but can be made arbitrarily short.
Note that the stable norm is continuous as a function of the metric.

Second case Let g, be such that the lengths of all non-separating geodesics
are bounded away from zero. Let v be a free homotopy class of separating
geodesics, the length [, of which goes to zero. Now the point is, for n large
enough, no geodesic multicurve minimising length in its homotopy class inter-
sects . Indeed by the collar lemma (see [Bu|) there exists an embedded collar
neighborhood C of v, of width w,, = argsinh(1/sinh({,,)). The boundary com-
ponents of C have length [,, cosh(w,, ), which is bounded above by some constant
K. Assume that a geodesic multicurve ¢ intersects y. Since y separates, the
intersection number must be even. We erase its segments contained in C, and
connect the remainder with segments of boundary components. The multicurve
thus obtained is homologous to ¢, and is shorter if w, > K/2.

Let M;, M, be the two surfaces with boundary obtained by cutting M along
7y, endowed with the metric induced by g,,. When w,, > K /2, the stable norm on
M splits as the direct sum of the stable norms || ||; and || ||2 for M7 and M. This
is because H;(M,R) = Hy(M1,R) & Hi(Ms,R). Let h = (hy,hs) € Hi(M,R).
If w, > K/2, by the above remark, a minimising representative of h is the union
of length-minimizing representatives of hy and hy. Then ||h|| = ||h1||1 + ||h22.

Note that this implies that the stable norm is not differentiable at any class of
the form (hy,0) or (0, h2). Indeed we have ||(h1,0)+t(0, h2)|| = ||h1]l1 +[¢] |h2]|2
which is not differentiable as a function of ¢ for ¢ = 0.
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boundary(C)

FIGURE 6. taking shortcuts
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